3.522 \(\int x^{3/2} (a+b x)^{3/2} \, dx\)

Optimal. Leaf size=119 \[ -\frac{3 a^3 \sqrt{x} \sqrt{a+b x}}{64 b^2}+\frac{3 a^4 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a+b x}}\right )}{64 b^{5/2}}+\frac{a^2 x^{3/2} \sqrt{a+b x}}{32 b}+\frac{1}{8} a x^{5/2} \sqrt{a+b x}+\frac{1}{4} x^{5/2} (a+b x)^{3/2} \]

[Out]

(-3*a^3*Sqrt[x]*Sqrt[a + b*x])/(64*b^2) + (a^2*x^(3/2)*Sqrt[a + b*x])/(32*b) + (a*x^(5/2)*Sqrt[a + b*x])/8 + (
x^(5/2)*(a + b*x)^(3/2))/4 + (3*a^4*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[a + b*x]])/(64*b^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0379329, antiderivative size = 119, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {50, 63, 217, 206} \[ -\frac{3 a^3 \sqrt{x} \sqrt{a+b x}}{64 b^2}+\frac{3 a^4 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a+b x}}\right )}{64 b^{5/2}}+\frac{a^2 x^{3/2} \sqrt{a+b x}}{32 b}+\frac{1}{8} a x^{5/2} \sqrt{a+b x}+\frac{1}{4} x^{5/2} (a+b x)^{3/2} \]

Antiderivative was successfully verified.

[In]

Int[x^(3/2)*(a + b*x)^(3/2),x]

[Out]

(-3*a^3*Sqrt[x]*Sqrt[a + b*x])/(64*b^2) + (a^2*x^(3/2)*Sqrt[a + b*x])/(32*b) + (a*x^(5/2)*Sqrt[a + b*x])/8 + (
x^(5/2)*(a + b*x)^(3/2))/4 + (3*a^4*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[a + b*x]])/(64*b^(5/2))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int x^{3/2} (a+b x)^{3/2} \, dx &=\frac{1}{4} x^{5/2} (a+b x)^{3/2}+\frac{1}{8} (3 a) \int x^{3/2} \sqrt{a+b x} \, dx\\ &=\frac{1}{8} a x^{5/2} \sqrt{a+b x}+\frac{1}{4} x^{5/2} (a+b x)^{3/2}+\frac{1}{16} a^2 \int \frac{x^{3/2}}{\sqrt{a+b x}} \, dx\\ &=\frac{a^2 x^{3/2} \sqrt{a+b x}}{32 b}+\frac{1}{8} a x^{5/2} \sqrt{a+b x}+\frac{1}{4} x^{5/2} (a+b x)^{3/2}-\frac{\left (3 a^3\right ) \int \frac{\sqrt{x}}{\sqrt{a+b x}} \, dx}{64 b}\\ &=-\frac{3 a^3 \sqrt{x} \sqrt{a+b x}}{64 b^2}+\frac{a^2 x^{3/2} \sqrt{a+b x}}{32 b}+\frac{1}{8} a x^{5/2} \sqrt{a+b x}+\frac{1}{4} x^{5/2} (a+b x)^{3/2}+\frac{\left (3 a^4\right ) \int \frac{1}{\sqrt{x} \sqrt{a+b x}} \, dx}{128 b^2}\\ &=-\frac{3 a^3 \sqrt{x} \sqrt{a+b x}}{64 b^2}+\frac{a^2 x^{3/2} \sqrt{a+b x}}{32 b}+\frac{1}{8} a x^{5/2} \sqrt{a+b x}+\frac{1}{4} x^{5/2} (a+b x)^{3/2}+\frac{\left (3 a^4\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,\sqrt{x}\right )}{64 b^2}\\ &=-\frac{3 a^3 \sqrt{x} \sqrt{a+b x}}{64 b^2}+\frac{a^2 x^{3/2} \sqrt{a+b x}}{32 b}+\frac{1}{8} a x^{5/2} \sqrt{a+b x}+\frac{1}{4} x^{5/2} (a+b x)^{3/2}+\frac{\left (3 a^4\right ) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\sqrt{x}}{\sqrt{a+b x}}\right )}{64 b^2}\\ &=-\frac{3 a^3 \sqrt{x} \sqrt{a+b x}}{64 b^2}+\frac{a^2 x^{3/2} \sqrt{a+b x}}{32 b}+\frac{1}{8} a x^{5/2} \sqrt{a+b x}+\frac{1}{4} x^{5/2} (a+b x)^{3/2}+\frac{3 a^4 \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a+b x}}\right )}{64 b^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.123042, size = 96, normalized size = 0.81 \[ \frac{\sqrt{a+b x} \left (\sqrt{b} \sqrt{x} \left (2 a^2 b x-3 a^3+24 a b^2 x^2+16 b^3 x^3\right )+\frac{3 a^{7/2} \sinh ^{-1}\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}}\right )}{\sqrt{\frac{b x}{a}+1}}\right )}{64 b^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(3/2)*(a + b*x)^(3/2),x]

[Out]

(Sqrt[a + b*x]*(Sqrt[b]*Sqrt[x]*(-3*a^3 + 2*a^2*b*x + 24*a*b^2*x^2 + 16*b^3*x^3) + (3*a^(7/2)*ArcSinh[(Sqrt[b]
*Sqrt[x])/Sqrt[a]])/Sqrt[1 + (b*x)/a]))/(64*b^(5/2))

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 120, normalized size = 1. \begin{align*}{\frac{1}{4\,b}{x}^{{\frac{3}{2}}} \left ( bx+a \right ) ^{{\frac{5}{2}}}}-{\frac{a}{8\,{b}^{2}} \left ( bx+a \right ) ^{{\frac{5}{2}}}\sqrt{x}}+{\frac{{a}^{2}}{32\,{b}^{2}} \left ( bx+a \right ) ^{{\frac{3}{2}}}\sqrt{x}}+{\frac{3\,{a}^{3}}{64\,{b}^{2}}\sqrt{x}\sqrt{bx+a}}+{\frac{3\,{a}^{4}}{128}\sqrt{x \left ( bx+a \right ) }\ln \left ({ \left ({\frac{a}{2}}+bx \right ){\frac{1}{\sqrt{b}}}}+\sqrt{b{x}^{2}+ax} \right ){b}^{-{\frac{5}{2}}}{\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{x}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)*(b*x+a)^(3/2),x)

[Out]

1/4/b*x^(3/2)*(b*x+a)^(5/2)-1/8/b^2*a*x^(1/2)*(b*x+a)^(5/2)+1/32/b^2*a^2*(b*x+a)^(3/2)*x^(1/2)+3/64*a^3*x^(1/2
)*(b*x+a)^(1/2)/b^2+3/128/b^(5/2)*a^4*(x*(b*x+a))^(1/2)/(b*x+a)^(1/2)/x^(1/2)*ln((1/2*a+b*x)/b^(1/2)+(b*x^2+a*
x)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(b*x+a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.60805, size = 412, normalized size = 3.46 \begin{align*} \left [\frac{3 \, a^{4} \sqrt{b} \log \left (2 \, b x + 2 \, \sqrt{b x + a} \sqrt{b} \sqrt{x} + a\right ) + 2 \,{\left (16 \, b^{4} x^{3} + 24 \, a b^{3} x^{2} + 2 \, a^{2} b^{2} x - 3 \, a^{3} b\right )} \sqrt{b x + a} \sqrt{x}}{128 \, b^{3}}, -\frac{3 \, a^{4} \sqrt{-b} \arctan \left (\frac{\sqrt{b x + a} \sqrt{-b}}{b \sqrt{x}}\right ) -{\left (16 \, b^{4} x^{3} + 24 \, a b^{3} x^{2} + 2 \, a^{2} b^{2} x - 3 \, a^{3} b\right )} \sqrt{b x + a} \sqrt{x}}{64 \, b^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(b*x+a)^(3/2),x, algorithm="fricas")

[Out]

[1/128*(3*a^4*sqrt(b)*log(2*b*x + 2*sqrt(b*x + a)*sqrt(b)*sqrt(x) + a) + 2*(16*b^4*x^3 + 24*a*b^3*x^2 + 2*a^2*
b^2*x - 3*a^3*b)*sqrt(b*x + a)*sqrt(x))/b^3, -1/64*(3*a^4*sqrt(-b)*arctan(sqrt(b*x + a)*sqrt(-b)/(b*sqrt(x)))
- (16*b^4*x^3 + 24*a*b^3*x^2 + 2*a^2*b^2*x - 3*a^3*b)*sqrt(b*x + a)*sqrt(x))/b^3]

________________________________________________________________________________________

Sympy [A]  time = 11.2612, size = 153, normalized size = 1.29 \begin{align*} - \frac{3 a^{\frac{7}{2}} \sqrt{x}}{64 b^{2} \sqrt{1 + \frac{b x}{a}}} - \frac{a^{\frac{5}{2}} x^{\frac{3}{2}}}{64 b \sqrt{1 + \frac{b x}{a}}} + \frac{13 a^{\frac{3}{2}} x^{\frac{5}{2}}}{32 \sqrt{1 + \frac{b x}{a}}} + \frac{5 \sqrt{a} b x^{\frac{7}{2}}}{8 \sqrt{1 + \frac{b x}{a}}} + \frac{3 a^{4} \operatorname{asinh}{\left (\frac{\sqrt{b} \sqrt{x}}{\sqrt{a}} \right )}}{64 b^{\frac{5}{2}}} + \frac{b^{2} x^{\frac{9}{2}}}{4 \sqrt{a} \sqrt{1 + \frac{b x}{a}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)*(b*x+a)**(3/2),x)

[Out]

-3*a**(7/2)*sqrt(x)/(64*b**2*sqrt(1 + b*x/a)) - a**(5/2)*x**(3/2)/(64*b*sqrt(1 + b*x/a)) + 13*a**(3/2)*x**(5/2
)/(32*sqrt(1 + b*x/a)) + 5*sqrt(a)*b*x**(7/2)/(8*sqrt(1 + b*x/a)) + 3*a**4*asinh(sqrt(b)*sqrt(x)/sqrt(a))/(64*
b**(5/2)) + b**2*x**(9/2)/(4*sqrt(a)*sqrt(1 + b*x/a))

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)*(b*x+a)^(3/2),x, algorithm="giac")

[Out]

Timed out